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This script is an extract, with gaps, from the book “Introduction to the Mathematical

Treatment of the Natural Sciences I - Analysis” by Christoph Luchsinger and Hans

Heiner Storrer, Birkhäuser Scripts. As a student you should buy the book as well and

work your way through it completely during the course MAT 182. You are allowed

to save this PDF and modify it as you like, for your own use during MAT 182. For

further use outside of MAT 182, please contact the lecturer, Christoph Luchsinger of

the University of Zürich, in advance. The copyright remains with Birkhäuser!

6. APPLICATIONS OF THE DERIVATIVE

(6.2) Terminology

a) Intervals

Intervals are special subsets of the set of real numbers R. If a and b (a < b) are

real numbers, we use the following notation:

(a, b) = {x | a < x < b} : open interval,

[a, b] = {x | a ≤ x ≤ b} : closed interval,

(a, b] = {x | a < x ≤ b}
[a, b) = {x | a ≤ x < b}

}
: half-open intervals.

Similarly, we write for example

(a,∞) = {x | x > a},
(−∞, b] = {x | x ≤ b}
(−∞,∞) = R etc.

In some books the notation ]a, b[ is also used for an open interval.

b) ε–neighbourhoods

ε–neighbourhoods are special open intervals, where ε is a positive number (i.e.

greater than 0), in practice usually a small positive number. We have already encoun-

tered such ε before (3.6.b), (4.6.d). Let x0 ∈ R and ε ∈ R, ε > 0. Then we define

Uε(x0) = (x0 − ε, x0 + ε) = {x | x0 − ε < x < x0 + ε} .

x0 − ε x0 x0 + ε

This interval is called the ε–neighbourhood of x0. Uε(x0) consists in other words of all

the points whose distance to x0 is less than ε.
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c) Boundary points and interior points

A half-open or closed interval has boundary points:

[a, b) : boundary point a,

(a, b] : boundary point b,

[a, b] : boundary points a, b .

The points in an interval I which are not boundary points are called interior points

of I. It is clear that x0 is an inner point of I if and only if there exists an ε–neighborhood

UUε(x0) (possibly a small one) which is entirely contained in I.

d) Increasing and decreasing functions

Let f be a function defined on the domain D(f). This function f is said to be

increasing if the following is true: f(x1) < f(x2) for all x1, x2 ∈ D(f) with x1 < x2.

Correspondingly, f is said to be decreasing if the following holds: f(x1) > f(x2) for all

x1, x2 ∈ D(f) with x1 < x2.

Note

In the above cases one can also say that f is strictly monotonically increasing (resp. decreasing).

Monotonically increasing (without the “strictly”) is defined as “f(x1) ≤ f(x2) for x1 < x2”; monoton-

ically decreasing analogously. Finally, f can also be said to be monotonic, if f is either monotonically

increasing or monotonically decreasing. In this book we will stick to the simpler terminology given

above.

And what happens to f(x) = x3 at the point 0?



64 6. Applications of the Derivative

(6.3) Growth of a function

b) The derivative and growth

Let the function f be defined (and differentiable) on the interval I. The interval

I can be open, closed, etc.; even the case I = R is also possible. The interval I does

not necessarily have to be the “natural domain” of f though (i.e. the largest possible

subset of R on which f could possibly be defined.) In connection with the questions

we discuss here, we might wish to restrict ourselves for example to an interval on which

the derivative is always positive.

If the derivative f ′(x) > 0 for all x in I, then in graphical terms the tangent to every

point of the graph has a positive slope, which means that the function is increasing on

I: x1 < x2 implies f(x1) < f(x2). A corresponding result holds in the case f ′(x) < 0,

where the function is decreasing.

We summarise as follows:

(1) f ′(x) > 0 for all x ∈ I =⇒ f is increasing on I.

(2) f ′(x) < 0 for all x ∈ I =⇒ f is decreasing on I.

As seen here, the “curvature of the graph” can vary; more details about that in (6.4).

Warning:
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Example

Let f(x) = ecx and therefore f ′(x) = c · ecx. Since ecx is positive everywhere, it follows

that

(i) For c > 0 we have f ′(x) > 0 : f is increasing on R. Later we will see that we can use

this to model processes which show growth over time. In such a setting, x is often

replaced by t (for “time”). Examples include a growing economy or population,

the early-stage spread of an epidemic, or the number of cells during cell division.

(ii) For c < 0 we have f ′(x) < 0 : f is decreasing on R. With this function we will later

model the decay of homogeneous radioactive material.

c) The derivative and constant functions

It is also important to consider the case where f ′(x) = 0 for all x in the interval I.

Geometrically interpreted, it becomes clear that f must then be a constant function, as

its tangent is horizontal everywhere. In algebraic terms:

f ′(x) = 0 =⇒ f is constant.

In contrast to b) (cf. the hint there with x3), here the converse is also true: One of

the simplest rules of derivation (5.3) states that the derivative of a constant function is

always 0. Thus we have the rule

(3) f ′(x) = 0 for all x ∈ I ⇐⇒ f is constant.
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d) A qualitative example

All this may be illustrated by means of a qualitative example. No claim is made

to numerical accuracy!
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y
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From a to b the function increases. At first it increases steadily and so the derivative

is constant, but then at the point b it becomes 0 (corresponds to a horizontal tangent!).

After this the function decreases until c and is then horizontal. Between b and c, then,

the derivative must be negative, but between c and d equal to 0. Next we see an increase

from d to e (derivative is positive), a “stationary point” at e (derivative = 0) and finally

a decrease (derivative is negative), during which the derivative remains constant after

g (the graph is a falling line!).

(6.4) Meaning of the second derivative

In this section we will require, not merely that f : I → R is differentiable, but

additionally that the second derivative f ′′ exists on I. Since f ′′ is also the first derivative

of f ′, we can apply all the observations in (6.3) to f ′ and f ′′ (instead of to f and f ′ as

we did before). If the second derivative is negative, f ′′(x) < 0, on the whole interval I,

then f ′(x) is decreasing on all of I, i.e. the slope of f(x) decreases (as x increases) —

and in the example below even becomes negative:
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In visual terms, this means that the graph of f curves to the right (German:

Rechtskurve). (Sometimes f is also said to be concave downward or concave upward,

but this terminology is a little confusing.) The case f ′′(x) > 0 is completely analogous,

and so we obtain:

(4) f ′′(x) < 0 on I =⇒ The graph of f curves to the right on I.

(5) f ′′(x) > 0 on I =⇒ The graph of f curves to the left on I.

The following sketches summarise the relationships of (4) and (5) with (1) and (2).

They demonstrate the various possible combinations of growth and curvature.
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Finally, one more important concept: if the graph of f changes at the point x0 from

left- curving to right-curving (or vice versa) then we say that x0 is an inflection point

(German: Wendepunkt). An inflection point is characterised by the conditions that

f ′′(x0) = 0 and that f ′′ has a sign change at x0.

The condition f ′′(x0) = 0 alone is not sufficient for an inflection point. Taking for

example the function f(x) = x4, we see that f ′′(0) = 0, but 0 is not an inflection point

because the sign of f ′′ does not change at 0. The graph curves to the left throughout

its whole length.

An inflection with a horizontal tangent (i.e. one which also satisfies f ′(x0) = 0) is

called a saddle point. For example, the function f(x) = x3 has a saddle point at 0.
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We repeat and summarise the above definitions.

(6) f has an inflection point at x0 ⇐⇒
f ′′(x0) = 0 and f ′′ has a sign change at x0.

(7) f has a saddle point at x0 ⇐⇒
f ′(x0) = f ′′(x0) = 0 and f ′′ has a sign change at x0.

x2 vs x4:
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Example

Analyse the function f(x) = 1
3x

3 − x with regard to the results in (6.3) and (6.4):
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(6.5) Extrema

a) Introduction

One very well-known application of differential calculus is in the solution of ex-

tremum problems (the finding of a function’s maxima and minima). The procedure is

one which will be familiar to you from secondary school: set the first derivative equal

to zero and use the second derivative as needed to check whether each solution is a

maximum or a minimum. In this chapter we will examine this simple process rather

more formally. We begin by more precisely stating the definition of an extremum.

b) Absolute and relative extrema (or “global” and “local” extrema)

Let f be a given function that is defined on a certain domain D(f). By the abso-

lute maximum of f (on D(f)), we mean the largest value which the function takes on

anywhere in the given domain. The absolute minimum is defined correspondingly. The

maxima and minima together are called the extrema of f . Somewhat more formally:

Let f : D(f) → R be a function. We say that f has an absolute maximum at x0, or

that f(x0) is an absolute maximum of f , if

f(x0) ≥ f(x) for all x ∈ D(f) .

The absolute minimum is defined in the same way (replacing ≥ with ≤).

Besides the absolute extrema, we will also find it useful to consider relative extrema.

The following sketch illustrates these concepts.

D(f)

rel. min.

rel. max.

rel. and
abs. min.

rel. max.

rel. min.

rel. and
abs. max.
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In order to give an exact definition for this too, we need to replace the intuitive

concept of “near x0” with the more formal language of an ε–neighbourhood Uε(x0) of

the point x0 (cf. (6.2.b)). Thus a precise formulation runs as follows:

The function f : D(f) → R has a relative maximum at the point x0 ∈ D(f), if there

exists an ε–neighbourhood Uε(x0) such that

f(x0) ≥ f(x) for all x ∈ D(f) ∩ Uε(x0) .

A relative minimum is defined correspondingly.

c) On the existence of extrema

Often one would like to locate the extrema (and above all the absolute extrema)

of a given function f : D(f) → R. It is entirely possible, though, that there are none

to be found. A function does not necessarily have to have any extrema, as we see by

analysing the following examples:

1) f : (0, 1]→ R, f(x) =
1

x
.

2) f : (0, 1)→ R, f(x) = x .
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d) How to find extrema

Please read this section in the textbook carefully! In the lecture, we will restrict

ourselves to a short discussion of the relevant theory and follow it up immediately with

some examples.

• An absolute maximum is always also a relative maximum, so we can simply search

for all relative maxima - the same goes for minima.

• From f ′(x0) = 0 we cannot simply conclude that f has a relative extremum at x0.

• It is also possible for extrema to exist where the derivative is not zero.

• possible candidates for the locations of relative extrema:

(i) Boundary points - troublesome, frequently forgotten!

If the domain D(f) is a half-open or closed interval, then it has boundary points.

The function may have an absolute or relative extremum at these points:

These boundary points are not in general captured by the methods of differential

calculus (the derivative of the function f is in general not 0 at a boundary point),

so if they exist, they always need to be considered separately.

(ii) Interior points at which f is differentiable - the nice case

Now that we have dealt with the boundary points, we consider an interior point x0

of the domain D(f) and also stipulate that f is differentiable at x0. Then:

Let x0 be an interior point of D(f) and let f be differentiable at x0. If f has a

relative extremum at the point x0, then f ′(x0) = 0.

This result is graphically obvious: if x0 is for example a relative maximum, then

the tangent line is increasing for points to the left of x0 and decreasing for points to

the right of x0. The tangent at x0 (which exists, according to our differentiability
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assumption) therefore must be horizontal: it follows that f ′(x0) = 0.

We will revisit it in f), but let it be emphasised right here that the converse of the

above statement is not true: from f ′(x0) = 0 it does not necessarily follow that f

has a relative extrema at x0.

(iii) Interior points at which f is not differentiable - you’ll know if you have these!

If f is not differentiable at x0, the condition f ′(x0) = 0 is meaningless. It can

happen though that an extremum occurs just where f is not differentiable. Thus

the function f(x) = |x| has its relative (and absolute) minimum at the point x = 0,

where it is not differentiable! Without making any claim to completeness, care

should be taken with functions which contain absolute value notation, as well as

when a function is defined differently on different intervals (curly brace notation).

e) Summary

The above considerations can be summarised (with some reordering) as follows:

A relative extremum (if one exists at all) must appear at one of the following locations:

1. Interior points x0 of the domain such that f ′(x0) = 0,

2. Boundary points of the domain (if any),

3. Points where f is not differentiable (if any).

The absolute extrema (if these exist) can be found among the relative extrema. The

largest relative maximum is the absolute maximum, and the smallest relative minimum

is the absolute minimum.
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f) Characterisation of extrema

If the function f is twice differentiable, then the following is a helpful criterium:

Let x0 be a point in the domain D(f) such that f ′(x0) = 0.

• If f ′′(x0) < 0, then f has a relative maximum at x0.

• If f ′′(x0) > 0, then f has a relative minimum at x0.

The rules above are seen to be plausible when we think back on the results men-

tioned in (6.4): a negative value for the second derivative indicates a curve which

bends to the right, i.e. is open downwards, and so this corresponds to a maximum.

In the same way, a positive second derivative corresponds to a minimum.

However, if f ′′(x0) = 0, this test is not informative, and we must find out in some

other way (textbook, p. 93), as shown in the following examples. In each of the

following cases we have f ′(0) = 0, f ′′(0) = 0.

For the record: there are really only 2 functions you need to keep in mind, to

understand the contrasts at work here: x3 (f ′(0) = 0 but the function is increasing

(even strictly monotonically increasing) for all of R and has no extremum, just a saddle

point) and x4 (f ′(0) = 0 and f ′′(0) = 0, not an inflection point but a minimum).
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(6.6) Examples of extremum problems

Example 1:
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Example 2:
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Another example:
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Exercise 6-5 a):
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(6.7) Graphical representation of functions

As a follow-on to this lecture, please read (6.7) in the textbook; this contains a compact

summary of all the aspects of a function’s behaviour which we might want to investigate.

It also shows graphs of the most essential functions - here’s a little memory aid http://

www.luchsinger-mathematics.ch/BeautifulDanceMoves.jpg . A minor observation

from practical experience:

Important:

1. Next, read the corresponding chapter of the book yourself.

2. Solve at least 5 of the end-of-chapter exercises and compare your answers with those

in the back of the book. If needed, solve more than 5.

3. Now you are ready to attend an exercise session. Print the relevant part of the

exercise script in advance, read through the exercises there in advance and start to

think about them yourself (for example, how you might approach solving them).

4. Next, solve the problems on the worksheet. Always try them first yourself. If it

doesn’t work, try with a tip from a fellow student. If it still doesn’t work, look at

another student’s solution, wait 1 hour and try to solve it again from your own head.

If none of that works: follow another student’s solution (but be sure you understand it

- in particular see that you aren’t copying someone else’s mistakes!)

5. Solve the corresponding problems from past exams in the course archive.

http://www.luchsinger-mathematics.ch/BeautifulDanceMoves.jpg
http://www.luchsinger-mathematics.ch/BeautifulDanceMoves.jpg

